

COMMENTARY

Molecular Mechanisms Involved in the Regulation of Prostaglandin Biosynthesis by Glucocorticoids

Margarete Goppelt-Struebe*

Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany

Abstract. The anti-inflammatory properties of glucocorticoids are attributed in part, to their interference with prostaglandin synthesis. Phospholipases A_2 and cyclooxygenases, the key enzymes of prostaglandin biosynthesis, are targets of glucocorticoid action; the molecular mechanisms, however, are not yet understood in detail. Obviously, glucocorticoids can act at different levels of gene regulation depending on cell type and inducing stimulus. The current knowledge of glucocorticoid interference with phospholipase A_2 and cyclooxygenase expression is surmarized. In comparison with other nonsteroidal anti-inflammatory drugs, glucocorticoids are unique inasmuch as they also inhibit cytokine synthesis and expression of other inflammation-related enzymes. Based on a more detailed understanding of glucocorticoid action, it may be possible to therapeutically exploit the anti-inflammatory effects and at the same time avoid the unwanted metabolic actions of these steroids. BIOCHEM PHARMACOL 53;10:1389–1395, 1997. © 1997 Elsevier Science Inc.

KEY WORDS. glucocorticoids; phospholipase A₂; cyclooxygenase; gene expression; prostaglandin

INTERFERENCE OF GLUCOCORTICOIDS WITH PROSTAGLANDIN SYNTHESIS

Glucocorticoids are potent anti-inflammatory and immunosuppressive drugs that act on almost all types of cells and show complex interactions with expression and function of multiple mediators. PGs† have long been recognized as targets of glucocorticoid action. PGs, especially PGE2 and PGI₂, have proinflammatory properties, increasing vascular permeability and causing vasodilation and hyperalgesia [1]. In contrast to other inhibitors of PG synthesis, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids do not directly inhibit any of the enzymes of PG biosynthesis. Rather, the action of glucocorticoids is dependent on their interference with de novo protein biosynthesis, as will be outlined further. Consequently, basal PG synthesis is hardly affected by glucocorticoids, whereas induced synthesis is susceptible. This can be demonstrated in vitro and in vivo. An example is shown in Fig. 1. Differentiated and non-differentiated monocytic cells were incubated with different types of steroids [2]. PG synthesis was induced by the addition of exogenous arachidonic acid. Although both types of cells were capable of synthesizing and releasing PGs, only the activated synthesis in the differentiated cells was inhibited concentration dependently by dexamethasone and prednisolone. This inhibition was due to an interference of glucocorticoids with the expression of the inducible cyclooxygenase isoform Cox-2,

as shown later [3]. At high concentrations, glucocorticoids act non-specifically, as demonstrated by the inhibition of PG synthesis by the gestagen progesterone. The steroids are related structurally to cholesterol, and the non-specific effect may relate to insertion of the steroids into cellular membranes. In *in vivo* studies, glucocorticoids were shown not to interfere with basal PG secretion in healthy human volunteers [4] or rabbits [5]. The basic enzyme machinery, necessary to synthesize prostanoids, was not changed by glucocorticoid treatment, whereas the inducible expression of PG-synthesizing enzymes was inhibited.

Glucocorticoids interfere with induction of PG synthesis caused by a wide variety of stimuli, notably the inflammatory cytokines interleukin-1 β and tumor necrosis factor α . Not only do these cytokines induce cyclooxygenases, but they induce phospholipases as well. Thus, cyclooxygenases and phospholipases are potential targets of glucocorticoid-mediated inhibition of PG synthesis.

MOLECULAR BASIS OF GLUCOCORTICOID ACTION

It may appear somewhat surprising that the molecular mechanism of glucocorticoid inhibition of PG synthesis is still far from being understood in detail. To facilitate insight into the problems encountered by these investigations, a brief summary of the general mechanisms of glucocorticoid action is given. A more detailed discussion of glucocorticoid receptor action may be found in extended reviews (e.g. [6–9]). The basic features of glucocorticoid action can be summarized as follows: The free GR forms a heterocomplex with heat shock proteins hsp90, hsp56, and hsp70. This heterocomplex is located in the cytosol and, to a lesser

^{*} Correspondence: Dr. Margarete Goppelt-Struebe, Universität Erlangen-Nürnberg, Medizinische Klinik, IV, Loschgestraße 8, D-91054 Erlangen, Germany. Tel. 49-9131-859201; FAX 49-9131-859202.

[†] Abbreviations: Cox, cyclooxygenase; GR, glucocorticoid receptor; GRE, glucocorticoid responsive element; sPLA₂, secreted phospholipase A₂; cPLA₂, cytosolic phospholipase A₂; and PG, prostaglandin.

1390 M. Goppelt-Struebe

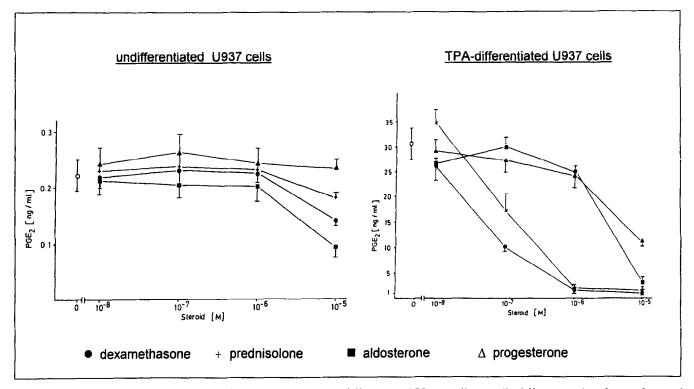


FIG. 1. Interference of glucocorticoids with PGE₂ synthesis. Undifferentiated U937 cells or cells differentiated with tetradecanoyl phorbol acetate (TPA, 5×10^{-9} M) for 72 hr were incubated for 24 hr with the steroids as indicated. Arachidonic acid (10^{-5} M) was added for the last 4 hr. PGE₂ synthesis was determined in the cell culture supernatants by radioimmunoassay [2]. Data are means \pm SD of two separate wells assayed in duplicate. Reprinted by permission of the publisher from *Biochem Pharmacol* 40: 1307–1316, 1990. Copyright 1990 by Elsevier Science Inc. [Ref. 2].

extent, in the nucleus. According to present knowledge, glucocorticoids enter the cells without the help of a carrier protein. Binding of the hormone leads to conformational changes of the receptor complex, dissociation of the heat shock proteins, and translocation of the receptor-hormone complex to the nucleus. The receptor-hormone complex acts as a transcription factor: It binds to certain DNA sequences (GRE) in the promoter regions of sensitive genes. Gene transcription can be enhanced or decreased by the GR. Recent data from several laboratories consistently indicate that the outcome of GR action does not depend solely on GR-DNA interaction. Interaction with other transcription factors is an essential feature of GR-mediated effects and seems to be a key to understanding cell- and stimulus-dependent effects of glucocorticoids.

Basically, three possible mechanisms of gene regulation by GRs have to be considered:

1. Direct enhancement of transcription of the target gene (examples in Table 1): This list contains proteins involved in protein and carbohydrate metabolism pointing to the physiological role of glucocorticoids. Surprisingly, Cox-2, the key enzyme of PG synthesis, can be a target of positive regulation by glucocorticoids in certain cell types. It was shown before that glucocorticoids enhance PG synthesis in amnion cells [18] and recently evidence was provided that in these cells Cox-2 is a direct target of positive glucocorticoid action [17].

- 2. Direct inhibition of transcription of the target gene via binding to negative GR elements or interaction with other transcription factors (examples in Table 2): The negative effects of glucocorticoids on gene transcription seem to be highly dependent on protein-protein interaction with binding of the GR to DNA being less important.
- 3. Indirect modulation of gene expression: In this case, the GR-sensitive gene product is an intermediary factor that modulates gene expression of the apparently glucocorticoid-sensitive target gene. The latter mechanism may be of particular relevance for the immunosuppressive effects of glucocorticoids and possibly also for their anti-

TABLE 1. Positive regulation of gene expression by glucocorticoids

Regulated gene	Interacting transcription factors	Ref(s).
Aspartate aminotransferase Phosphoenolpyruvate carboxykinase Tyrosine aminotransferase Somatostatin Angiotensin II Type 1A receptor Cyclooxygenase-2	GR tetramer GR/CREB HNF3 GR/CREB	[10] [11] [12, 13] [14] [15, 16] [17]

Examples of gene promoters are given that have been shown to be activated directly by the glucocorticoid receptor.

TABLE 2. Negative regulation of gene expression by glucocorticoids

Regulated gene	Interacting transcription factors	Ref(s).
Prooplomelanocortin		[19]
Proliferin	AP-1	[20]
Collagenease	AP-1	[21-23]
Interleukin-2	AP-1	[24, 25]
Interferon-y	AP-1 CREB-ATF	[26]
MCP-1*	AP-1	[11]
c-fos	SRF	[27]
Interleukin 8	NF-ĸB	[28]
Interleukin-6	NF-ĸB	[29]
ICAM-1†	NF-kB	[30]

Examples of genes are given, the transcription of which is regulated negatively by the glucocorticoid receptor.

inflammatory actions, because most of the cytokines and enzymes involved in eicosanoid metabolism do not contain negative GREs in their promoters. Interference of glucocorticoids with one of the main transcription factor families, the NF-kB/-kB family, was shown recently by several groups [31, 32].

Thus far, none of the mechanisms discussed has been shown to mediate the effects of glucocorticoids on the enzymes involved in PG biosynthesis, although all of the essential enzymes are targets of glucocorticoid action.

INHIBITION OF PHOSPHOLIPASES A₂ BY GLUCOCORTICOIDS

Glucocorticoids inhibit both types of phospholipases involved in prostanoid synthesis under pathological conditions; the secreted "inflammatory" phospholipase A₂ (sPLA₂ type II) and the cytosolic enzyme (cPLA₂, type IV).

In the 1980s the hypothesis was put forward and readily accepted that glucocorticoids induce proteins called lipocortins (later termed annexins) that were characterized by their ability to bind calcium and phospholipids and thus inhibit phospholipase A₂ activity [33]. In our own investigations, we could not show any correlation between lipocortin expression and glucocorticoid effects on PG synthesis or phospholipase activity. In differentiated U937 cells, expression of lipocortin I and II was, if at all, reduced by glucocorticoids [2]. Similar results were obtained by several other groups (e.g. Refs. 34-36). Lipocortins (or annexins) are abundant proteins found in all cells. Depending on the cellular system, expression of some of the isoforms was reported to be regulated by glucocorticoids (e.g. Ref. 37). In general, however, lipocortins are no longer considered to be essential mediators of glucocorticoidinduced inhibition of phospholipase A2, although they inhibit prostanoid release when applied exogenously [38]. In vivo, an increase in phospholipase activity and a decrease in lipocortin expression were detected in adrenalectomized rats; however, this does not necessarily demonstrate a causal relation [39].

Depending on cell type and stimulus, inhibition of sPLA₂ by glucocorticoids is seen at the mRNA or at the protein level, suggesting transcriptional as well as posttranscriptional mechanisms that have not been defined yet at the molecular level [36, 40, 41]. The secreted phospholipase A₂ is also involved in defense mechanisms and secreted as acute phase protein (e.g. Refs. 42–45). Expression of acute phase proteins, in general, is either enhanced or not influenced by glucocorticoids. Recent data from our group show that glucocorticoids also interfere with induction of sPLA₂ expression in hepatocytes.¹

Activity of cPLA2 is rapidly regulated by changes in intracellular Ca2+ levels, phosphorylation, and membrane association. Depending on the stimulus, glucocorticoids may interfere with the signaling cascade leading to activation of cPLA2, as shown recently in macrophages [46]. When incubation is prolonged, cPLA₂ mRNA expression is enhanced by cytokines and is sensitive to glucocorticoid inhibition. We first demonstrated regulation by tumor necrosis factor α and dexamethasone in epithelial cells [47]. Our findings have since been confirmed and investigated in more detail in other cellular systems [48]. The molecular mechanisms of glucocorticoid-mediated inhibition of cPLA₂ expression have not been worked out. The promoter of cPLA2 gene contains two positive GREs, but functionality, i.e. induction of cPLA2 by glucocorticoids, has not been shown thus far [49, 50].

Inhibition of phospholipases alone, however, could not account for the effects observed on PG synthesis. In experiments with bone marrow-derived macrophages, we found the enzyme activity of the cyclooxygenase more strongly inhibited by dexamethasone than phospholipase A_2 activity, suggesting cyclooxygenase as an additional target for glucocorticoid action [51].

INTERFERENCE OF GLUCOCORTICOIDS WITH CYCLOOXYGENASE ISOZYME ACTIVITY

Intensive investigation of the two cyclooxygenase isoforms over the last 5 years has provided a lot of information regarding the structure of the genes, including the promoter region and the regulation of gene expression by various bioactive mediators (summarized in Refs. 52 and 53). It became evident that both enzymes, in particular Cox-2, are regulated in a cell- and stimulus-dependent way. Therefore, generalizations regarding enzyme regulation should be made rather cautiously.

Cox-1 is often referred to as a "constitutive" enzyme, alluding to the observation that Cox-1 expression remains unaffected by most stimuli in cell culture systems. The promoter region of the gene, however, contains binding

^{*} MCP, monocyte chemoattractant protein.

[†] ICAM, intracellular adhesion molecule.

¹Haselmann A, and Goppelt-Struebe M, Glucocorticoids inhibit oncostatin M-induced phospholipase A_2 gene expression in human hepatoma cells. Cytokine 9: 199–205, 1997.

M. Goppelt-Struebe

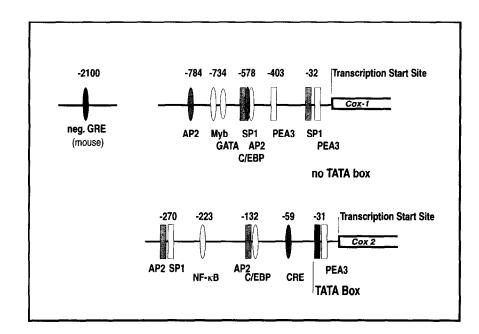


FIG. 2. Regulatory elements of Cox-1 and Cox-2 promoters. Location of the regulatory elements is according to Inoue *et al.* [54]. Additional regulatory elements are located further upstream in the Cox-2 promoter [55].

sequences for several transcription factors (Fig. 2 modified according to Ref. 54; additional binding sites for transcription factors were identified further upstream in the promoter [55]). Regulation of Cox-1 expression was observed during monocytic differentiation and was sensitive to inhibition by glucocorticoids [3]. Whether the inhibition is related to the putative negative GR element detected in the promoter region of the Cox-1 gene was not investigated further. Similarly, Cox-1 expression was increased modestly by serum [56] or long-term incubation with platelet-derived growth factor [57]. Inflammatory stimuli, however, usually affect Cox-2 expression without any changes in Cox-1 mRNA or protein expression. Nevertheless, recent data obtained with Cox-1 knock-out mice provided evidence that Cox-1 plays a role in certain states of inflammatory reactions [58]. It may be predicted that, under those circumstances, phospholipases may be the up-regulated enzymes.

In general, modulation of Cox-2 expression—positive or negative—can be envisaged at three different levels: mRNA translation, mRNA stability, or gene transcription.

Regulation at the translational level has hardly been investigated. Glucocorticoids were assumed to interfere at this level, because in some systems protein expression of Cox-2 was more sensitive to inhibition by glucocorticoids than mRNA levels [56, 59]. Thus far, no mechanistic model has been proposed to explain the glucocorticoid-mediated inhibition at the translational level.

In its 3'-untranslated region, Cox-2 mRNA contains a high number of so-called Shaw-Kamen sequences AUUUA, which are found in many immediate-early genes and have been shown to relate to enhanced mRNA degradation [55]. Consistent with this finding, the half-life of Cox-2 mRNA seems to be short, the shortest time reported being 30 min [60]. An increase in Cox-2 mRNA stability was described in several cellular systems, most

notably in cells stimulated by interleukin-1 [60, 61]. Conclusions regarding mRNA stability are usually drawn from experiments where transcriptional activity is blocked by actinomycin D. These experiments should be viewed with some caution: half-lives obtained by this method may far extend the half-life observed in cells in the absence of actinomycin D, suggesting interference of actinomycin D with short-lived regulatory proteins [62]. Kinetic experiments also argued in favor of an interference of glucocorticoids with mRNA stability: even when dexamethasone was added to cells after the stimulus, at a time when the maximal transcription rate had been achieved already, it was still able to suppress steady-state mRNA levels [56, 63]. Several years ago, a proposal was put forward by Bailey et al. [64] that glucocorticoids might induce protein(s) that was assumed to interfere with mRNA accessibility and further processing by binding to the 3'-untranslated region. This hypothesis has neither been confirmed nor rejected.

Transcriptional regulation of Cox-2 has been investigated in more detail. The Cox-2 promoter was analyzed in several species (e.g. Refs. 55 and 65–67) and contains potential binding sites for various transcription factors (Fig. 2). Most of these elements are conserved between species, but located at different positions within the promoter. The AP-1 site, the CRE element, the NF-κB and the C/EBP (NF-IL6) site, which are located within the first 400 bp, were shown to be functional (Table 3). Again, these results cannot be generalized: overexpression of the oncogene v-src in fibroblasts led to an enhanced expression of Cox-2, whereas overexpression of v-src in rat mesangial cells did not enhance Cox-2 expression, but enhanced Cox-1 expression and rather prevented induction of Cox-2 by stimuli such as platelet-derived growth factor AB or BB [72].

Interference of glucocorticoids with transcription was observed in functional studies: reduced transcriptional ac-

TABLE 3. Transcriptional regulation of Cox-2

Response element	Cell type	Stimulus	Ref.
C/EBP	Rat granulosa cells	hCG	[65]
AP-1, CRE	Chicken fibroblasts	Serum	[68]
CRE	Mouse fibroblasts	v-src	[69]
NF-kB, C/EBP	Mouse osteoblastic cells	$TNF\alpha$	[70]
CRE	Human monocytic cells	Differentiation	[71]
CRE, C/EBP	Human endothelial cells	LPS/TPA	[54]

Transcriptional regulation of Cox-2 has been analyzed in different cellular systems. Abbreviations: C/EBP is also called NF-IL6 or IL-6REBP; hCG, human chorionic gonadotropin; TNF, tumor necrosis factor; LPS, lipopolysaccharide; and TPA, tetradecaonyl phorbol acetate.

tivity by dexamethasone was reported in serum-stimulated fibroblasts [56]. In mesangial cells stimulated with plateletderived growth factor, we could show that the reduced Cox-2 mRNA levels were not due to message destabilization, also suggesting that glucocorticoids interfere with transcription (unpublished results). The mechanism of the transcriptional inhibition remains unclear. The negative GRE shows some variability in sequence, but no putative glucocorticoid receptor binding site was detected in the Cox-2 genes of different species sequenced thus far. Attempts to prove glucocorticoid effects in promoter transfection experiments have not been successful [68]. These data suggest that either the GR itself may act outside the DNA regions investigated so far, or, more likely, a glucocorticoidsensitive transcription factor interferes with transcriptional activation of the Cox-2 gene. Although there is ample evidence that glucocorticoids interfere with PG synthesis by diminishing Cox-2 mRNA, as determined by Northern blot analyses, the precise molecular mechanisms are still not known.

Cox-2 as a target of glucocorticoid regulation was confirmed by *ex vivo* studies [73]: Cox-2 levels were undetectable in macrophages from normal rats, but were elevated following adrenalectomy, and were not detectable in adrenalectomized animals receiving dexamethasone replacement therapy. These data show that also under normal physiological conditions, Cox-2 levels are regulated by endogenous glucocorticoids.

CONCLUSION

Investigations conducted over the last couple of years have provided us with concepts of how glucocorticoids work, as well as insights into the regulation of phospholipase and cyclooxygenase expression. The task ahead will now be to bring the different pieces of this complicated puzzle together to understand more clearly the molecular mechanisms of glucocorticoid-mediated inhibition of PG synthesis.

It is doubtful whether a unifying mechanism will emerge, which will explain phospholipase or cyclooxygenase inhibition in all cells and by all stimuli. An important aspect

will be the analysis of the interaction between the glucocorticoid receptor and other transcription factors. This might then be the basis of pharmacological concepts of how to mimic interactions of the glucocorticoid receptor not with all but with certain transcription factors that are involved in the regulation of a limited number of genes. Following this hypothesis, it might be possible not only to affect enzymes of PG biosynthesis but also other proinflammatory proteins, such as cytokines, the inducible NO synthase, or chemokines, which are known targets of glucocorticoids. Ideally, transcription factors should be targeted which are not, or are to a lesser extent, involved in the regulation of enzymes related to basic cellular metabolism.

Cell specificity and stimulus dependency of glucocorticoid action may lead the way to novel drugs that may more specifically interfere with a certain subset of inflammation-related proteins than do the glucocorticoids of today.

Note added in proof: In a recent paper, Ristimäki et al. [74] showed evidence for post-transcriptional destabilization of cytokine-induced Cox-2 mRNA by dexamethasone.

References

- 1. Goodwin JS, Are prostaglandins proinflammatory, antiinflammatory, both or neither? *J Rheumatol* **18:** 26–29, 1991.
- Koehler L, Hass R, DeWitt DL, Resch K and Goppelt-Struebe M, Glucocorticoid-induced reduction of prostanoid synthesis in TPA-differentiated U937 cells is mainly due to a reduced cyclooxygenase activity. Biochem Pharmacol 40: 1307–1316, 1990.
- 3. Hoff T, DeWitt D, Kaever V, Resch K and Goppelt-Struebe M, Differentiation-associated expression of prostaglandin G/H synthase in monocytic cells. FEBS Lett 320: 38–42, 1993.
- Sebaldt RJ, Sheller JR, Oates JA, Jackson Roberts L II and Fitzgerald GA, Inhibition of eicosanoid biosynthesis by glucocorticoids in humans. *Proc Natl Acad Sci USA* 87: 6974– 6978, 1990.
- Naray-Fejes-Toth A, Fejes-Toth G, Fischer C and Frölich JC, Effect of dexamethasone on *in vivo* prostanoid production in the rabbit. J Clin Invest 74: 120–123, 1984.
- Munck A, Mendel DB, Smith LI and Orti E, Glucocorticoid receptors and actions. Am Rev Respir Dis 141: S2–S10, 1990.
- Truss M and Beato M, Steroid hormone receptors: Interaction with deoxyribonucleic acid and transcription factors. *Endocr Rev* 14: 459–479, 1993.
- 8. Fuller PJ, The steroid receptor superfamily: Mechanisms of diversity. FASEB J 5: 3092–3099, 1991.
- Wahli W and Martinez E, Superfamily of steroid nuclear receptors: Positive and negative regulators of gene expression. FASEB J 5: 2243–2249, 1991.
- Garlatti M, Daheshia M, Slater E, Bouguet J, Hanoune J, Beato M and Barouki R, A functional glucocorticoid-responsive unit composed of two overlapping inactive receptorbinding sites: Evidence for formation of a receptor tetramer. Mol Cell Biol 14: 8007–8017, 1994.
- Rameh LE and Armelin MCS, Downregulation of JE and KC genes by glucocorticoids does not prevent the G₀ → G₁ transition in BALB/3T3 cells. Mol Cell Biol 12: 4612–4621, 1992.
- 12. Roux J, Pictet R and Grange T, Hepatocyte nuclear factor 3 determines the amplitude of the glucocorticoid response of

M. Goppelt-Struebe

the rat tyrosine aminotransferase gene. DNA Cell Biol 14: 385–396, 1995.

- Espinas ML, Roux J, Pictet R and Grange T, Glucocorticoids and protein kinase A coordinately modulate transcription factor recruitment at a glucocorticoid-responsive unit. Mol Cell Biol 15: 5346–5354, 1995.
- 14. Liu JL, Papachristou DN and Patel YC, Glucocorticoids activate somatostatin gene transcription through co-operative interaction with the cyclic AMP signaling pathway. *Biochem J* **301**: 863–869, 1994.
- 15. Guo D-F, Uno S, Ishihata A, Nakamura N and Inagami T, Identification of *cis*-acting glucocorticoid responsive element in the rat angiotensin II type 1A promoter. *Circ Res* 77: 249–257, 1995.
- Murasawa S, Matsubara H, Kanasaki M, Kljima K, Maruyama K, Nio Y, Okubo N, Tsukaguchi H, Mori Y and Inada M, Characterization of glucocorticoid response element of rat angiotensin II type IA receptor gene. Biochem Biophys Res Commun 209: 833–840, 1995.
- Zakar T, Hirst JJ, Mijovic JE and Olson DM, Glucocorticoids stimulate the expression of prostaglandin endoperoxide H synthase-2 in amnion cells. *Endocrinology* 136: 1610–1619, 1995.
- Protestio FA, Zakar T and Olson DM, Glucocorticoids stimulate prostaglandin synthesis in human amnion cells by a receptor-mediated mechanism. J Clin Endocrinol Metab 67: 1205–1210, 1988.
- 19. Ning YM, Sanchez ER, Hutchison KA, Scherrer LC, Czar MJ, Ning Y, Leach KL, Deibel MR Jr and Pratt WB, Potentiation of glucocorticoid receptor-mediated gene expression by the immunophilin ligands FK506 and rapamycin FK506 binding to the 56-kilodalton immunophilin (Hsp56) in the glucocorticoid receptor heterocomplex has no effect on receptor folding or function. J Biol Chem 32: 3953–3957, 1993.
- Diamond MI, Miner JN, Yoshinaga SK and Yamamoto KR, Transcription factor interactions: Selectors of positive or negative regulation from single DNA element. Science 249: 1266–1272, 1990.
- Jonat C, Rahmsdorf HJ, Park K-K, Cato ACB, Gebel S, Ponta H and Herrlich P, Antitumor promotion and antiinflammation: Down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62: 1189–1204, 1990.
- Schüle R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM and Evans RM, Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor, Cell 62: 1217–1226, 1990.
- 23. Yang-Yen H-F, Chambard J-C, Sun Y-L, Smeal T, Schmidt TJ, Drouin J and Karin M, Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62: 1205–1215, 1990.
- 24. Vacca A, Felli MP, Farina AR, Mattinotti S, Maroder M, Screpanti I, Meco D, Petrangeli E, Frati L and Gulino A, Glucocorticoid receptor-mediated suppression of the interleukin 2 gene expression through impairment of the cooperativity between nuclear factor of activated T cells and AP-1 enhancer elements. J Exp Med 175: 637–646, 1992.
- 25. Paliogianni F, Raptis A, Ahuja SS, Najjar SM, Boumpas DT, Simmons DL, Xie W, Evett G, Merrill J, Robertson DL, Bradshaw WS, Merrill JR, Liu JL, Papachristou DN and Patel YC, Negative transcriptional regulation of human interleukin 2 (IL-2) gene by glucocorticoids through interference with nuclear transcription factors AP-1 and NF-AT. J Clin Invest 301: 863–869, 1994.
- 26. Cippitelli M, Sica A, Viggiano V, Ye J, Ghosh P, Birrer MJ and Young HA, Negative transcriptional regulation of the interferon-γ promoter by glucocorticoids and dominant negative mutants of c-Jun. J Biol Chem 270: 12548–12556, 1995.

27. Karagianni N and Tsawdaroglou N, The c-fos serum response element (SRE) confers negative response to glucocorticoids. Oncogene 9: 2327–2334, 1994.

- Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto S, Kasahara T and Matsushima K, Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor-κB is target for glucocorticoid-mediated interleukin 8 gene repression. J Biol Chem 269: 13289–13295, 1994.
- 29. Ray A and Prefontaine KE, Physical association and functional antagonism between the p65 subunit of transcription factor NF-κB and the glucocorticoid receptor. *Proc Natl Acad Sci USA* **91:** 752–756, 1994.
- Caldenhoven E, Liden J, Wissink S, Van de Stolpe A, Raaijmakers J, Koenderman L, Okret S, Gustafsson JA and Van der Saag PT, Negative cross-talk between RelA and the glucocorticoid receptor: A possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 9: 401–412, 1995.
- Scheinman RI, Cogswell PC, Lofquist AK and Baldwin AS Jr, Role of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science 270: 283– 286, 1995.
- Auphan N, DiDonato JA, Rosette C, Helmberg A and Karin M, Immunosuppression by glucocorticoids: Inhibition of NF-κB activity through induction of IκB synthesis. Science 270: 286–290, 1995.
- Davidson FF, Dennis EA and Glenney JR, Inhibition of phospholipase A₂ by "lipocortins" and calpactins. An effect of binding to substrate phospholipids. J Biol Chem 262: 1698– 1705, 1987.
- Hullin F, Raynal P, Ragab-Thomas JMF, Fauvel J and Chap H, Effect of dexamethasone on prostaglandin synthesis and on lipocortin status in human endothelial cells. J Biol Chem 264: 3506–3513, 1989.
- Wijkander J and Sundler R, A role for protein kinase C-mediated phosphorylation in the mobilization of arachidonic acid in mouse macrophages. *Biochim Biophys Acta* 1010: 78–87, 1989.
- 36. Vervoordeldonk MJ, Schalkwijk CG, Vishwanath BS, Aarsman AJ and van den Bosch H, Levels and localization of group II phospholipase A₂ and annexin I in interleukin- and dexamethasone-treated rat mesangial cells: Evidence against annexin mediation of the dexamethasone-induced inhibition of group II phospholipases A₂. Biochim Biophys Acta 1224: 541–550, 1994.
- 37. Schelling JR, Gentry DJ and Dubyak GR, Annexin II inhibition of G protein-regulated inositol triphosphate formation in rat aortic smooth muscle. *Am J Physiol* **270:** F682–F690, 1996.
- Cirino G, Flower RJ, Browning JL, Sinclair LK and Pepinsky RB, Recombinant human lipocortin 1 inhibits thromboxane release from guinea-pig isolated perfused lung. *Nature* 328: 270–272, 1987.
- Vishwanath BS, Frey FJ, Bradbury MJ, Dallman MF and Frey BM, Glucocorticoid deficiency increases phospholipase A₂ activity in rats. J Clin Invest 92: 1974–1980, 1993.
- Nakano T, Ohara O, Teraoka H and Arita H, Glucocorticoids suppress group II phospholipase A₂ production by blocking mRNA synthesis and post-transcriptional expression. J Biol Chem 265: 12745–12748, 1990.
- 41. Vervoordeldonk MJBM, Schalkwijk CG, Pfeilschifter J and van den Bosch H, Effects of dexamethasone and transforming growth factor-β2 on group II phospholipase A₂ mRNA and activity levels in interleukin-1β- and forskolin-stimulated mesangial cells. *Biochem J* 315: 435–441, 1996.
- 42. Elsbach P, Weiss J, Franson RC, Beckerdite-Quagliata S, Schneider A and Harris L, Separation and purification of a potent bactericidal/permeability-increasing protein and a

- closely associated phospholipase A_2 from rabbit polymorphonuclear leukocytes. Observations on their relationship. *J Biol Chem* **254:** 11000–11009, 1979.
- Vadas P, Browning J, Edelson J and Prutanski W, Extracellular phospholipase A₂ expression and inflammation: The relationship with associated disease states. *J Lipid Mediat* 8: 1–30, 1993.
- 44. MacPhee M, Chepenik KP, Liddell RA, Nelson KK, Siracusa LD and Buchberg AM, The secretory phospholipase A2 gene is a candidate for the MomI locus, a major modifier of Apc^{Min}, induced intestinal neoplasia. Cell 81: 957–966, 1995.
- 45. Crowl RM, Stoller TJ, Conroy RR and Stoner CR, Induction of phospholipase A₂ gene expression in human hepatoma cells by mediators of the acute phase response. *J Biol Chem* **266:** 2647–2651, 1991.
- Gewert K and Sundler R. Dexamethasone down-regulates the 85 kDa phospholipase A₂ in mouse macrophages and suppresses its activation. Biochem J 307: 499-504, 1995.
- Goppelt-Struebe M and Rehfeldt W, Glucocorticoids inhibit TNF α-induced cytosolic phospholipase A₂ activity. Biochim Biophys Acta 1127: 163--167, 1992.
- Hoeck WG, Ramesha CS, Chang DJ, Fan N and Heller RA, Cytoplasmic phospholipase A₂ activity and gene expression are stimulated by tumor necrosis factor: Dexamethasone blocks the induced synthesis. Proc Natl Acad Sci USA 90: 4475–4479, 1993.
- Miyashita A, Crystal RG and Hay JG, Identification of a 27 bp 5'-flanking region element responsible for the low level constitutive expression of the human cytosolic phospholipase A₂ gene. *Nuclear Acids Res* 23: 293–301, 1995.
- Wu T, Ikezono T, Angus CW and Shelhamer JH, Characterization of the promoter for the human 85 kDa cytosolic phospholipase A₂ gene. *Nucleic Acids Res* 25: 5093–5098, 1994.
- Goppelt-Struebe M, Wolter D and Resch K, Glucocorticoids inhibit prostaglandin synthesis not only at the level of phospholipase A₂ but also at the level of cyclo-oxygenase/ PGE isomerase. Br J Pharmacol 98: 1287–1295, 1989.
- Goppelt-Struebe M, Regulation of prostaglandin endoperoxide synthase (cyclooxygenase) isozyme expression. Prostaglandins Leukot Essent Fatty Acids 52: 213–222, 1995.
- Herschman HR, Prostaglandin synthase 2. Biochim Biophys Acta 1299: 125–140, 1996.
- Inoue H, Yokoyama C, Hara S, Yoshimoti T and Tanabe T, Transcriptional regulation of human prostaglandin-endoperoxide synthase-2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. J Biol Chem 270: 24956–24971, 1995.
- Appleby SB, Ristimak: A, Neilson K, Narko K, Hia T, Structure of the human cyclo-oxygenase-2 gene. Biochem J 302: 723–727.
- DeWitt DL and Meade EA, Serum and glucocorticoid regulation of gene transcription and expression of the prostaglandin H synthase-1 and prostaglandin H synthase-2 isozymes. Arch Biochem Biophys 306: 94–102, 1993.
- 57. Goppelt-Struebe M, Stroebel M and Hoppe J, Regulation of platelet-derived growth factor (PDGF) isoform-mediated expression of prostaglandin G/H synthase in mesangial cells. Differential signal transduction pathways of PDGF-AB and -BB. Kidney Int 50: 71--78, 1996.
- Langenbach R, Morham SG, Tiano HF, Loftin CD, Ghanayem BI, Chulada PC, Mahler JF, Lee CA, Goulding EH, Kluckman KD, Kim HS and Smithies O, Prostaglandin induced inflammation and indomethacin-induced gastric ulceration. Cell 83: 483–492, 1995.
- 59. Coyne DW, Nickols M, Bertrand W and Morrison AR,

- Regulation of mesangial cell cyclooxygenase synthesis by cytokines and glucocorticoids. *Am J Physiol* **263**: F97–F102, 1992.
- Srivastava SK, Tetsuka T, Daphna-Iken D and Morrison AR, IL-1β stabilizes COX II mRNA in renal mesangial cells: Role of 3'-untranslated region. Am J Physiol 267: F504–F508, 1994.
- Ristimäki A, Garfinkel S, Wessendorf J, Maciag T and Hla T, Induction of cyclooxygenase-2 by interleukin-1α. Evidence for post-transcriptional regulation. J Biol Chem 269: 11769– 11775, 1994.
- 62. Stroebel M and Goppelt Struebe M, Signal transduction pathways responsible for serotonin-mediated prostaglandin G/H synthase expression in rat mesangial cells. *J Biol Chem* **269:** 22952–22957, 1994.
- 63. Evett GE, Xie W, Chipman JG, Robertson DL and Simmons DL, Prostaglandin G/H synthase isoenzyme 2 expression in fibroblasts: Regulation by dexamethasone, mitogens, and oncogenes. Arch Biochem Biophys 306: 169–177, 1993.
- Bailey JM, Makheja AN, Pash J and Verma M, Corticosteroids suppress cyclooxygenase messenger RNA levels and prostanoid synthesis in cultured vascular cells. Biochem Biophys Res Commun 157: 8504–8509, 1988.
- 65. Sirois J and Richards JS, Transcriptional regulation of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. *J Biol Chem* **268**: 21931–21938, 1993.
- 66. Sirols J, Levy LO, Simmons DL and Richards JS, Characterization and hormonal regulation of the promoter of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. J Biol Chem 268: 12199–12206, 1993.
- 67. Kosaka T, Miyata A, Ihara H, Hara S, Sugimoto T, Takeda O, Takahashi E and Tanabe T, Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem 221: 889–897, 1994.
- 68. Xie W, Merrill JR, Bradshaw WS and Simmons DL, Structural determination and promoter analysis of the chicken mitogen-inducible prostaglandin G/H synthase gene and genetic mapping of the murine homolog. Arch Biochem Biophys 300: 247–252, 1993.
- 69. Xie W, Fletcher BS, Andersen RD and Herschman HR, v-src Induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element. Mol Cell Biol 14: 6531–6539, 1994.
- Yamamoto K, Arakawa T, Ueda N and Yamamoto S, Transcriptional roles of nuclear factor κB and nuclear factor-interleukin-6 in the tumor necrosis factor α-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. *J Biol Chem* 270: 31315–31320, 1995.
- 71. Inoue H, Nanayama T, Hara S, Yokoyama C and Tanabe T, The cyclic AMP response element plays an essential role in the expression of the human prostaglandin-endoperoxide synthase 2 gene in differentiated U937 monocytic cells. FEBS Lett 350: 51–54, 1994.
- 72. Reiser OA, Marx M, Hoppe J and Goppelt-Struebe M, Modulation of prostaglandin G/H synthase expression in mesangial cells transfected by pp60^{c-src} proto-oncogene. *Exp Cell Res* **222:** 304–311, 1996.
- Masferrer JL, Reddy ST, Zweifel BS, Selbert K, Needleman P, Gilbert RS and Herschman HR, In vivo glucocorticoids regulate cyclooxygenase-2 but not cyclooxygenase-1 in peritoneal macrophages. J Pharmacol Exp Ther 270: 1340–1344, 1994.
- 74. Ristimäki A, Narko K and Hla T, Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: Evidence for post-transcriptional regulation. *Biochem J* 318: 325–331, 1996.